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SLIM: A Slender Technique for
Unbounded-Field Problems

S. E. Schwarz

Abstract—Electrostatic- and electromagnetic-field problems in un-
bounded regions are often solved using finite differences (FD’s) or
finite elements (FE) combined with approximate boundary conditions.
Inversion of the sparse FD or FE matrix is then required. First-order or
higher order absorbing boundary conditions may be used, or one can use
more accurate boundary conditions obtained by the measured equation of
invariance (MEI) or by iteration. The more accurate boundary conditions
are helpful because they permit reduction of the size of the mesh
and, thus, the number of unknowns. In this paper, we show that the
process can be carried to a maximally simple limit in which the mesh
is reduced to a single layer and the matrix-inversion step disappears
entirely. This results in the single-layer iterative method (SLIM), an
unusually simple technique for unbounded-field problems. Computational
experiments demonstrate the effectiveness of SLIM in electrostatics, and
also in electrodynamic examples, such as scattering of TM plane waves
from a perfectly conducting cylinder. The technique is most likely to be
useful in large or complex problems where simplification is helpful, or in
repetitive calculations such as scattering of radiation from many angles
of incidence.

Index Terms—Adaptive estimation, boundary-value problems, finite-
element methods, finite-difference methods, scattering.

I. INTRODUCTION

When mesh-based methods such as the finite difference (FD)
method are used in unbounded regions, it is often useful to terminate
the mesh through the use of an approximate boundary condition. One
well-known technique for doing this makes use of absorbing boundary
conditions [1], [2]. In its simpler forms, this method simulates the
external fields that are truncated from the problem by assuming
that they have the same form as the fields of a simpler radiating
structure, such as a radiating dipole. In order to obtain accuracy,
the truncation must typically take place at some distance from the
radiating structure, which results in a large mesh, with the associated
computational requirements. Meiet al. [3], [4] introduced another
technique for mesh termination, known as the measured equation
of invariance (MEI) technique. In MEI, approximate conditions
on the fields at the boundary of the mesh are obtained by using
Green’s functions representing the fields of charges or currents on the
conductors. These are combined with conjectural charge or current
distributions (“metrons”) on the conductors to compute conjectural
fields at the mesh boundary, from which boundary conditions are
derived. Interesting work has been done on the mechanisms and
accuracy of this method [5]–[7]. In many cases, it is found to work
surprisingly well. However, in general cases, its accuracy is limited
because the boundary conditions are based on current distributions
which are not the correct ones, but only guesses. Unfortunately, it is
difficult to estimate how much error will arise in a particular case.

A further step was taken by Li and Cendes [8] and Jin and
Lu [9], who applied what they referred to as “adaptive” boundary
conditions. Their approach is similar to that of Meiet al. in that it
reduces computational effort by truncating the FD or finite element
(FE) mesh close to the conductors or scatterers. However, in the
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adaptive method, an initial incorrect guess of the charges or currents
is corrected through iteration. That is, one guesses the currents
and then calculates the resulting fields at the boundary of the
mesh through the use of Green’s functions. From these fields, one
calculates boundary conditions at the boundary of the mesh. Then, it
is possible to recalculate the fields and, hence, the currents by using
the approximate boundary conditions. The process can be repeated
and is found to converge. If convergence does occur, the resulting
fields and currents satisfy the boundary conditions and Maxwell’s
equations and, thus, should be correct within computational error.

The adaptive technique is more subtle than it first appears. One
might think of a similar, but simpler technique in which one would
(using, for simplicity, an electrostatic example) try to find the field
of a charged conductor by guessing a charge distribution, finding
the electrostatic potential at the boundary, applying this potential
at the boundary to create a Dirichlet boundary condition, and then
calculating the fields by FD’s, from which one would then find a
corrected charge distribution. However, in many cases, this method
is found to diverge. The corresponding approach of calculating the
normal field at the boundary and iteratively solving the Neumann
problem is even less likely to converge. A more successful approach
is that of finding the ratioa(h), defined as the potential at each point
A on the boundary divided by the potential at pointB, which is
the nearest neighbor interior point, separated fromA by the lattice
spacingh. One then applies the boundary conditionVA = aVB and
proceeds with the FD solution. If we definea(h) = 1+Rh, then to
first order inh, the boundary condition being applied is

@V

@n
�RV = 0 (1)

where R is a function of position. Interestingly, this boundary
condition (which we shall refer to as a “ratio boundary condition”)
is neither the Dirichlet nor the Neumann boundary condition, but
something which combines the two. For a physical interpretation of
this condition, we note that on a one-dimensional transmission line,
the voltageV and currentI obey@V=@z = �j!LI. Thus, in the one-
dimensional case, specifyingR amounts to specifying the admittance
with which the transmission line is terminated. In higher dimensions,
the ratio condition implies specification of the normal impedance
at the boundary. Use of the ratio condition in the iterative method
described above is usually found to lead to convergence, although
to our knowledge a general proof of this is lacking. Mathematical
interpretation of this boundary condition is made difficult by the
product termRV . It generates new spatial frequencies not present
in either R or V .

A further step was taken by Riuset al. [10], who converted
the original MEI technique into a sparse matrix boundary-element
method. In this method, the FD mesh collapses onto the scattering
surface, and all calculations take place on that surface. Solution of a
sparse FD matrix is still required.

In this paper, we point out that the methods just described can be
combined to yield an adaptive technique in which the FD calculation
disappears entirely, and no matrix inversion is required at all. Using
an electrostatic example, the approach is as follows. Fig. 1 shows
an air-spaced microstrip structure with ground-plane and a conductor
held at potentialV . Surrounding the conductor (but not the ground
plane) is a single layer of mesh points at which the potentialsv+i and
v�i are unknown. We guess an initial charge distributionq

(1)
j and use

it with the appropriate Green’s functionsG(ri; rj) (which include
the effect of the ground plane) to find a set of trial potentials. For
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Fig. 1. Air-spaced microstrip structure. The FD mesh is a single layer of
points enclosing the strip (but not the ground plane).

each position on the conductor, we calculate trial potentials at three
positions:v+ andv� at positions just above and below the conductor,
and v at the point on the conductor that lies between them. These
trial potentials are then used to obtain the ratiosa+ � v+=v and
a� � v�=v at each position on the conductor. The ratios are then
used to find a first estimate of the potentials usingv

+(1)
i

= a+
i
V

and v
�(1)
i

= a�
i
V . The second estimate of the charges is then

from Gauss’ Law,q(2)j = (2V � v
+(1)
j � v

�(1)
j )=�h, where� is the

permittivity andh is the lattice spacing. (Appropriate modifications
are made at the edges of the conductor.) The sequence of steps is then
repeated untilq(n+1) agrees withq(n) within required accuracy. This
method, which we call the single-layer iterative method (SLIM) is
found, in numerical experiments, to work for some important classes
of problems. For example, it seems to work well in electrostatics
with air-spaced microstrip patches of any shape. Interestingly, it is
also found to work in electrodynamics, for scattering of TM plane
waves from a perfectly conducting cylinder. On the other hand, some
cases have been found in which erratic or even divergent solutions
are obtained, and this requires investigation.

It is by no means obvious that solutions of the boundary-value
problem with ratio boundary condition are unique. We have succeeded
in proving this only for the electrostatic case, under the assumption
that all conductors, except the ground plane, are at the same potential.
As regards convergence, we have demonstrated something like local
convergence in electrostatics, by showing that if the error in a charge
distribution (difference between it and the correct distribution) is
small, the error of the charge distribution that results from the next
iteration approaches zero in the limit ash ! 0.

II. COMPUTATIONAL EXAMPLES

As a first example, we apply SLIM to an air-spaced microstrip
structure without time variation. The result after ten iterations is
shown in Fig. 2. The conductor is held at a potential of 10 V, and
the ground plane at zero. Here, the circles are from SLIM, while the
solid line is found from the method of moments (MOM). Agreement
is close, except at the endpoints. The endpoints are singular, and
neither method can be expected to be meaningful there. However,
we also note that in SLIM it is necessary to calculate the charges
from the fields, a step that is unnecessary in MOM. This step can
give difficulty at singular points and might lead to extra errors.

When we turn to electrodynamics, there is little theory available
to assure convergence or uniqueness. In computational experiment,
however, the method is generally found to work. A SLIM calculation
of scattering of a TM plane wave by a perfectly conducting cylinder
with diameter equal to wavelength is shown in Fig. 3. In this
calculation, the unknowns are thez-directed currents at the lattice

Fig. 2. Calculated charge density on air-spaced microstrip held at 10 V, in
farad per meter. Circles are from SLIM (ten iterations); solid curve from
MOM. The width of the strip is 21h and the distance between strip and
groundplane is 20h.

Fig. 3. Scattering of plane wave by perfectly conducting cylinder (electric
field parallel to cylinder axis.) Graph shows current density as a function of
angle in degrees. Diameter of cylinder is equal to wavelength;h is equal
to circumference divided by 360. Solid curve from SLIM (seven iterations);
dotted curve from series solution.

points on the circumference of the cylinder. Using the well-known
expression for the fields of a sinusoidal current in an infinitely long
wire [11], the electric fieldsE andE+ arising from a guessed initial
current distribution are calculated at lattice points, respectively, on
the surface and in a single layer enclosing the surface. The scattered
field at the surface is known to be the negative of the incident field
at the surface. The new estimate of the scattered field at each lattice
point above the surface is then taken to be the product of the ratio
(E+=E) at that position times the known scattered field at the point
directly below it on the surface. The difference between the new
estimate of the scattered electric field above the surface and the
known field on the surface is then used to findH', from which the
new value of the current at that position is obtained. The solid curve
in Fig. 3 is thez-directed current density as a function of angular
position, after seven iterations. The lattice spacing is 1/360 times the
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circumference. The dots are from the well-known solution in a series
of cylindrical harmonics. Agreement is seen to be very good, even
including the small “bump” at 180�. Convergence depends on use
of a sufficiently small lattice spacing compared with wavelength. A
rough experimental maximum forh is �=8�.

III. D ISCUSSION OF THEMETHOD

SLIM is a technique for solution of unbounded electrostatic (and
conjecturally, electrodynamic) field problems that requires no inver-
sion of matrices. This makes the method simple to program and
use. Its simplicity should be especially helpful in otherwise complex
problems involving oddly shaped boundaries and three-dimensional
fields.

The method’s characteristic self-consistency also tends to create
confidence in the accuracy of the results (as compared, for instance,
with ordinary absorbing boundary conditions, which give results
whose accuracy is unknown). If one finds a set of charges and
fields which are self-consistent (in the sense that the fields imply the
charges and vice versa) and which satisfies the boundary conditions,
it seems quite likely that this solution will be correct. On the
basis of intuition and experience, we conjecture that in all cases in
which SLIM converges, the results are correct to within accuracy of
computation.

An important question is whether SLIM actually offers any saving
of computational resources as compared with other methods that
require matrix inversion. MOM is undesirable for large problems
because it results in full matrices, inversion of which requires on the
order ofN3 operations (whereN is the number of unknown charges
or currents). FD or FE methods with various absorbing boundary
conditions (or the MEI boundary conditions) result in sparse matrices
requiring on the order of onlyN2 computational operations. In
comparison, SLIM eliminates the matrix-inversion steps and reduces
the storage of unknowns to minimal size. However, one must still
evaluate on the order ofN2 Green’s functions: once for each field
point for each source point. Depending of the complexity of the
Green’s function, this step may take longer than the matrix-inversion
step, which makes the elimination of that step less important. On
the other hand, the evaluation of the Green’s functions only has
to be done once for each structure. Once the Green’s functions
have been found and stored, further computational steps can take
place quickly. Thus, the second and subsequent iterations should
require only on the order ofN operations. Moreover, in scattering
problems, the Green’s functions are characteristic of the scatterer, not
of the illumination. Thus, if one is finding radar cross sections with
many angles of illumination, all the angles after the first one should
require computational steps on the order of only the first power of
N .

As in any technique in which simplicity and lightness are pushed to
the limit, a question of reliability must arise. It is quite possible that
SLIM is less robust than the adaptive absorbing boundary condition
techniques (with matrix inversion) described by Jin and Liu [9]. This
question requires further study.
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Using Selective Asymptotics to Accelerate
Dispersion Analysis of Microstrip Lines

Smain Amari, R̈udiger Vahldieck, and Jens Bornemann

Abstract—A selective asymptotic technique (SAT) to accelerate the
elements of the impedance matrix in the conventional spectral-domain
approach (SDA) is presented. Instead of using the full asymptotic expres-
sion of the Green’s functions, only those parts which cannot be evaluated
in closed form are approximated by their asymptotic expressions. The
resulting expressions are more accurate and systematic, as no additional
parameter is introduced. The technique is applied to determine the
effective dielectric constant of an open microstrip line to demonstrate
its efficiency.

Index Terms—Dispersive media, microstrip lines, numerical integra-
tion, spectral-domain approach.
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