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SLIM: A Slender Technique for adaptive method, an initial incorrect guess of the charges or currents
Unbounded-Field Problems is corrected through iteration. That is, one guesses the currents
and then calculates the resulting fields at the boundary of the

S. E. Schwarz mesh through the use of Green’s functions. From these fields, one

calculates boundary conditions at the boundary of the mesh. Then, it

is possible to recalculate the fields and, hence, the currents by using
) AbztrgCt—_E'ec”OSta“Cf; and Ie'edc”omagnf?ﬁ,f'ﬁec}_‘:f pfOb'emS(FE‘, ;"" the approximate boundary conditions. The process can be repeated

ounded regions are often solved using finite differences s) or : -

finite eIemer?ts (FE) combined with apprgximate boundary conditions. Qnd is found to converge. If convergence doe-s' oceur, the result|’ng
Inversion of the sparse FD or FE matrix is then required. First-order or  fields and currents satisfy the boundary conditions and Maxwell's
higher order absorbing boundary conditions may be used, or one can use equations and, thus, should be correct within computational error.
more accurate boundary conditions obtained by the measured equation of ~ The adaptive technique is more subtle than it first appears. One
invariance (MEI) or by iteration. The more accurate boundary conditions might think of a similar, but simpler technique in which one would

are helpful because they permit reduction of the size of the mesh f . s . . .
and, thus, the number of unknowns. In this paper, we show that the (using, for simplicity, an electrostatic example) try to find the field

process can be carried to a maximally simple limit in which the mesh Of a charged conductor by guessing a charge distribution, finding
is reduced to a single layer and the matrix-inversion step disappears the electrostatic potential at the boundary, applying this potential
entirely. This results in the single-layer iterative method (SLIM), an gt the boundary to create a Dirichlet boundary condition, and then
unusually simple technique for unbounded-field problems. Computational calculating the fields by ED’s. from which one would then find a
experiments demonstrate the effectiveness of SLIM in electrostatics, and 9 o y . ’ . .
also in electrodynamic examples, such as scattering of TM plane waves F:orrected Ch*’?‘rge distribution. Howe\{er, in many cases, this method
from a perfectly conducting cylinder. The technique is most likely to be is found to diverge. The corresponding approach of calculating the
useful in large or complex problems where simplification is helpful, or in  normal field at the boundary and iteratively solving the Neumann
r(ip_etlt_lc\i/e calculations such as scattering of radiation from many angles problem is even less likely to converge. A more successful approach
of incidence. is that of finding the ratia.(h), defined as the potential at each point
Index Terms—Adaptive estimation, boundary-value problems, finite- 4 on the boundary divided by the potential at poiBt which is
element methods, finite-difference methods, scattering. the nearest neighbor interior point, separated frdnby the lattice
spacingh. One then applies the boundary conditita = «V and
proceeds with the FD solution. If we definéh) = 1 4+ R, then to

I. INTRODUCTION first order in. the bound dition bei ied i
irst order inh, the boundary condition being applied is
When mesh-based methods such as the finite difference (FD? Yy g app
method are used in unbounded regions, it is often useful to terminate al —_RV =0 @
the mesh through the use of an approximate boundary condition. One on

well-known technique for doing this makes use of absorbing boundaghere R is a function of position. Interestingly, this boundary
conditions [1], [2]. In its simpler forms, this method simulates thgondition (which we shall refer to as a “ratio boundary condition”)
external fields that are truncated from the problem by assumiRgneither the Dirichlet nor the Neumann boundary condition, but
that they have the same form as the fields of a simpler radiatiggmething which combines the two. For a physical interpretation of
structure, such as a radiating dipole. In order to obtain accuraglis condition, we note that on a one-dimensional transmission line,
the truncation must typically take place at some distance from thig voltagel” and currenf obeydV/dz = —jwLI. Thus, in the one-
radiating structure, which results in a Iarge mesh, with the aSSOCiatﬁﬁ']ensionm case, Specifyin@ amounts to Specifying the admittance
computational requirements. Met al. [3], [4] introduced another with which the transmission line is terminated. In higher dimensions,
technique for mesh termination, known as the measured equatifé ratio condition implies specification of the normal impedance
of invariance (MEI) technique. In MEI, approximate conditiongt the boundary. Use of the ratio condition in the iterative method
on the fields at the boundary of the mesh are obtained by usifgscribed above is usually found to lead to convergence, although
Green's functions representing the fields of charges or currents on fheour knowledge a general proof of this is lacking. Mathematical
conductors. These are combined with conjectural charge or currgiierpretation of this boundary condition is made difficult by the

distributions (“metrons”) on the conductors to compute conjecturgloduct termRV . It generates new spatial frequencies not present
fields at the mesh boundary, from which boundary conditions aj¢ either R or V.

derived. Interesting work has been done on the mechanisms an@ further step was taken by Riust al. [10], who converted

accuracy of this method [5]-{7]. In many cases, it is found to worfe original MEI technique into a sparse matrix boundary-element
surprisingly well. However, in general cases, its accuracy is limiteflethod. In this method, the FD mesh collapses onto the scattering
because the boundary conditions are based on current distributignfface, and all calculations take place on that surface. Solution of a
which are not the correct ones, but only guesses. Unfortunately, itsisarse FD matrix is still required.
difficult to estimate how much error will arise in a particular case. |n this paper, we point out that the methods just described can be
A further step was taken by Li and Cendes [8] and Jin angbmbined to yield an adaptive technique in which the FD calculation
Lu [9], who applied what they referred to as “adaptive” boundanyisappears entirely, and no matrix inversion is required at all. Using
conditions. Their approach is similar to that of Metial. in that it an electrostatic example, the approach is as follows. Fig. 1 shows
reduces computational effort by truncating the FD or finite elemegh air-spaced microstrip structure with ground-plane and a conductor
(FE) mesh close to the conductors or scatterers. However, in #&d at potentiall’. Surrounding the conductor (but not the ground
plane) is a single layer of mesh points at which the potentifland
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Fig. 1. Air-spaced microstrip structure. The FD mesh is a single layer of
points enclosing the strip (but not the ground plane).

1 J

each position on the conductor, we calculate trial potentials at three
positions:w* andv ™~ at positions just above and below the conductor,®% 5 0 15 20 T s
and v at the point on the conductor that lies between them. These ) ) ) ) )
trial potentials are then used to obtain the ratids = v /v and f'g' 2. Calculated charge density on air-spaced microstrip held at 10 V, in
_ _ . . arad per meter. Circles are from SLIM (ten iterations); solid curve from
a” = v~ /v at each position on the conductor. The ratios are thgflom. The width of the strip is 21h and the distance between strip and
used to find a first estimate of the potentials usifg” = oV groundplane is 20:.
and vi_(U = a; V. The second estimate of the charges is then
from Gauss' Lawg\” = (2V — o7 — 07" /eh, wheree is the 55
permittivity and” is the lattice spacing. (Appropriate modifications
are made at the edges of the conductor.) The sequence of steps is the
repeated untif"*") agrees with;™ within required accuracy. This
method, which we call the single-layer iterative method (SLIM) is 2
found, in numerical experiments, to work for some important classes
of problems. For example, it seems to work well in electrostatics
with air-spaced microstrip patches of any shape. Interestingly, it i€5
also found to work in electrodynamics, for scattering of TM plane
waves from a perfectly conducting cylinder. On the other hand, some
cases have been found in which erratic or even divergent solutions
are obtained, and this requires investigation.

It is by no means obvious that solutions of the boundary-value
problem with ratio boundary condition are unique. We have succeeded
in proving this only for the electrostatic case, under the assumptio% '
that all conductors, except the ground plane, are at the same potential
As regards convergence, we have demonstrated something like local
convergence in electrostatics, by showing that if the error in a charge?;
distribution (difference between it and the correct distribution) is

small, the error of the charge distribution that results from the neig- 3. Scattering of plane wave by perfectly conducting cylinder (electric
iteration approaches zero in the limit as— 0. field parallel to cylinder axis.) Graph shows current density as a function of

angle in degrees. Diameter of cylinder is equal to wavelenptlis equal
to circumference divided by 360. Solid curve from SLIM (seven iterations);

1. COMPUTATIONAL EXAMPLES dotted curve from series solution.

As a first example, we apply SLIM to an air-spaced microstrip
structure without time variation. The result after ten iterations igoints on the circumference of the cylinder. Using the well-known
shown in Fig. 2. The conductor is held at a potential of 10 V, anexpression for the fields of a sinusoidal current in an infinitely long
the ground plane at zero. Here, the circles are from SLIM, while thvére [11], the electric fieldsZ and E™ arising from a guessed initial
solid line is found from the method of moments (MOM). Agreementurrent distribution are calculated at lattice points, respectively, on
is close, except at the endpoints. The endpoints are singular, &ne surface and in a single layer enclosing the surface. The scattered
neither method can be expected to be meaningful there. Howeviéld at the surface is known to be the negative of the incident field
we also note that in SLIM it is necessary to calculate the chargasthe surface. The new estimate of the scattered field at each lattice
from the fields, a step that is unnecessary in MOM. This step canint above the surface is then taken to be the product of the ratio
give difficulty at singular points and might lead to extra errors.  (E*/E) at that position times the known scattered field at the point

When we turn to electrodynamics, there is little theory availabiirectly below it on the surface. The difference between the new
to assure convergence or unigueness. In computational experimestimate of the scattered electric field above the surface and the
however, the method is generally found to work. A SLIM calculatioknown field on the surface is then used to fiid, from which the
of scattering of a TM plane wave by a perfectly conducting cylinderew value of the current at that position is obtained. The solid curve
with diameter equal to wavelength is shown in Fig. 3. In thig Fig. 3 is thez-directed current density as a function of angular
calculation, the unknowns are thedirected currents at the lattice position, after seven iterations. The lattice spacing is 1/360 times the
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circumference. The dots are from the well-known solution in a series
of cylindrical harmonics. Agreement is seen to be very good, even
including the small “bump” at 180 Convergence depends on use 1]
of a sufficiently small lattice spacing compared with wavelength. A

rough experimental maximum fdr is \/8x. 2]

IIl. DI1scussION OF THEMETHOD

SLIM is a technique for solution of unbounded electrostatic (ano[sl
conjecturally, electrodynamic) field problems that requires no inver-
sion of matrices. This makes the method simple to program anf]
use. Its simplicity should be especially helpful in otherwise complex
problems involving oddly shaped boundaries and three-dimension?g]
fields.

The method’s characteristic self-consistency also tends to create
confidence in the accuracy of the results (as compared, for instandé]
with ordinary absorbing boundary conditions, which give results
whose accuracy is unknown). If one finds a set of charges an
fields which are self-consistent (in the sense that the fields imply th
charges and vice versa) and which satisfies the boundary conditions,
it seems quite likely that this solution will be correct. On the [8]
basis of intuition and experience, we conjecture that in all cases in
which SLIM converges, the results are correct to within accuracy 0{9]
computation.

An important question is whether SLIM actually offers any saving
of computational resources as compared with other methods til
require matrix inversion. MOM is undesirable for large problems
because it results in full matrices, inversion of which requires on they;
order of N* operations (wheré' is the number of unknown charges
or currents). FD or FE methods with various absorbing boundary
conditions (or the MEI boundary conditions) result in sparse matrices
requiring on the order of only¥> computational operations. In
comparison, SLIM eliminates the matrix-inversion steps and reduces
the storage of unknowns to minimal size. However, one must still
evaluate on the order oF? Green’s functions: once for each field
point for each source point. Depending of the complexity of the
Green’s function, this step may take longer than the matrix-inversion
step, which makes the elimination of that step less important. On
the other hand, the evaluation of the Green’s functions only has
to be done once for each structure. Once the Green’s functions
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Using Selective Asymptotics to Accelerate
Dispersion Analysis of Microstrip Lines

Smain Amari, Ridiger Vahldieck, and Jens Bornemann

Abstract—A selective asymptotic technique (SAT) to accelerate the

have been found and stored, further computational steps can tg}g?nents

of the impedance matrix in the conventional spectral-domain

place quickly. Thus, the second and subsequent iterations shosidroach (SDA) is presented. Instead of using the full asymptotic expres-
require only on the order oV operations. Moreover, in scatteringsion of the Green’s functions, only those parts which cannot be evaluated
problems, the Green’s functions are characteristic of the scatterer, foglosed form are approximated by their asymptotic expressions. The
of the illumination. Thus, if one is finding radar cross sections witfpsulting expressions are more accurate and systematic, as no additional
| £ illumi . I th | fter the fi h rameter is introduced. The technique is applied to determine the
many angles of illumination, all the angles after the first one shoufitective dielectric constant of an open microstrip line to demonstrate
require computational steps on the order of only the first power @$ efficiency.
N Index Terms—Dispersive media, microstrip lines, numerical integra-

As in any technique in which simplicity and lightness are pushed {g, " spectral-domain approach.

the limit, a question of reliability must arise. It is quite possible that
SLIM is less robust than the adaptive absorbing boundary condition
techniques (with matrix inversion) described by Jin and Liu [9]. This

uestion requires further study. . . .
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